Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Infect Immun ; 92(3): e0001924, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38353543

RESUMO

Virus-like particles (VLPs) are protein-based nanoparticles frequently used as carriers in conjugate vaccine platforms. VLPs have been used to display foreign antigens for vaccination and to deliver immunotherapy against diseases. Hemolysin-coregulated proteins 1 (Hcp1) is a protein component of the Burkholderia type 6 secretion system, which participates in intracellular invasion and dissemination. This protein has been reported as a protective antigen and is used in multiple vaccine candidates with various platforms against melioidosis, a severe infectious disease caused by the intracellular pathogen Burkholderia pseudomallei. In this study, we used P22 VLPs as a surface platform for decoration with Hcp1 using chemical conjugation. C57BL/6 mice were intranasally immunized with three doses of either PBS, VLPs, or conjugated Hcp1-VLPs. Immunization with Hcp1-VLPs formulation induced Hcp1-specific IgG, IgG1, IgG2c, and IgA antibody responses. Furthermore, the serum from Hcp1-VLPs immunized mice enhanced the bacterial uptake and opsonophagocytosis by macrophages in the presence of complement. This study demonstrated an alternative strategy to develop a VLPs-based vaccine platform against Burkholderia species.


Assuntos
Burkholderia pseudomallei , Burkholderia , Animais , Camundongos , Proteínas Hemolisinas , Camundongos Endogâmicos C57BL , Imunoglobulina G , Camundongos Endogâmicos BALB C
2.
mSphere ; 8(5): e0037823, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37768049

RESUMO

Burkholderia pseudomallei (Bpm) is the causative agent of melioidosis disease. Bpm is a facultative intracellular pathogen with a complex life cycle inside host cells. Pathogenic success depends on a variety of virulence factors with one of the most critical being the type 6 secretion system (T6SS). Bpm uses the T6SS to move into neighboring cells, resulting in multinucleated giant cell (MNGC) formation, a strategy used to disseminate from cell to cell. Our prior study using a dual RNA-seq analysis to dissect T6SS-mediated virulence on intestinal epithelial cells identified BicA as a factor upregulated in a T6SS mutant. BicA regulates both type 3 secretion system (T3SS) and T6SSs; however, the extent of its involvement during disease progression is unclear. To fully dissect the role of BicA during systemic infection, we used two macrophage cell lines paired with a pulmonary in vivo challenge murine model. We found that ΔbicA has a distinct intracellular replication defect in both immortalized and primary macrophages, which begins as early as 1 h post-infection. This intracellular defect is linked with the lack of cell-to-cell dissemination and MNGC formation as well as a defect in T3SS expression. The in vitro phenotype translated in vivo as ΔbicA was attenuated in a pulmonary model of infection, demonstrating a distinct macrophage activation profile and a lack of pathological features present in the wild type. Overall, these results highlight the role of BicA in regulating intracellular virulence and demonstrate that specific regulation of secretion systems has a significant effect on host response and Bpm pathogenesis. IMPORTANCE Melioidosis is an understudied tropical disease that still results in ~50% fatalities in infected patients. It is caused by the Gram-negative bacillus Burkholderia pseudomallei (Bpm). Bpm is an intracellular pathogen that disseminates from the infected cell to target organs, causing disseminated disease. The regulation of secretion systems involved in entry and cell-to-cell spread is poorly understood. In this work, we characterize the role of BicA as a regulator of secretion systems during infection of macrophages in vitro and in vivo. Understanding how these virulence factors are controlled will help us determine their influence on the host cells and define the macrophage responses associated with bacterial clearance.


Assuntos
Burkholderia pseudomallei , Melioidose , Sistemas de Secreção Tipo VI , Humanos , Animais , Camundongos , Burkholderia pseudomallei/genética , Virulência , Melioidose/microbiologia , Macrófagos/microbiologia , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Sistemas de Secreção Tipo VI/metabolismo , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/metabolismo
3.
Microbiol Spectr ; : e0473422, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36943089

RESUMO

Enterohemorrhagic Escherichia coli (EHEC) is an important causative agent of diarrhea in humans that causes outbreaks worldwide. Efforts have been made to mitigate the morbidity and mortality caused by these microorganisms; however, the global incidence is still high, causing hundreds of deaths per year. Several vaccine candidates have been evaluated that demonstrate some stability and therapeutic potential but have limited overarching effect. Virus-like particles have been used successfully as nanocontainers for the targeted delivery of drugs, proteins, or nucleic acids. In this study, phage P22 nanocontainers were used as a carrier for the highly antigenic T3SS structural protein EscC that is conserved between EHEC and other enteropathogenic bacteria. We were able to stably incorporate the EscC protein into P22 nanocontainers. The EscC-P22 particles were used to intranasally inoculate mice, which generated specific antibodies against EscC. These antibodies increased the phagocytic activity of murine macrophages infected with EHEC in vitro and reduced bacterial adherence to Caco-2 epithelial cells in vitro, illustrating their functionality. The EscC-P22-based particles are a potential nanovaccine candidate for immunization against EHEC O157:H7 infections. IMPORTANCE This study describes the initial attempt to use P22 viral-like particles as nanocontainers expressing enterohemorrhagic Escherichia coli (EHEC) proteins that are immunogenic and could be used as effective vaccines against EHEC infections.

4.
Gut Microbes ; 14(1): 2111950, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35984745

RESUMO

Melioidosis is a disease caused by the Gram-negative bacillus Burkholderia pseudomallei (Bpm), commonly found in soil and water of endemic areas. Naturally acquired human melioidosis infections can result from either exposure through percutaneous inoculation, inhalation, or ingestion of soil-contaminated food or water. Our prior studies recognized Bpm as an effective enteric pathogen, capable of establishing acute or chronic gastrointestinal infections following oral inoculation. However, the specific mechanisms and virulence factors involved in the pathogenesis of Bpm during intestinal infection are unknown. In our current study, we standardized an in vitro intestinal infection model using primary intestinal epithelial cells (IECs) and demonstrated that Bpm requires a functional T6SS for full virulence. Further, we performed dual RNA-seq analysis on Bpm-infected IECs to evaluate differentially expressed host and bacterial genes in the presence or absence of a T6SS. Our results showed a dysregulation in the TNF-α signaling via NF-κB pathway in the absence of the T6SS, with some of the genes involved in inflammatory processes and cell death also affected. Analysis of the bacterial transcriptome identified virulence factors and regulatory proteins playing a role during infection, with association to the T6SS. By using a Bpm transposon mutant library and isogenic mutants, we showed that deletion of the bicA gene, encoding a putative T3SS/T6SS regulator, ablated intracellular survival and plaque formation by Bpm and impacted survival and virulence when using murine models of acute and chronic gastrointestinal infection. Overall, these results highlight the importance of the type 6 secretion system in the gastrointestinal pathogenesis of Bpm.


Assuntos
Burkholderia pseudomallei , Microbioma Gastrointestinal , Melioidose , Sistemas de Secreção Tipo VI , Fatores de Virulência , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Burkholderia pseudomallei/genética , Burkholderia pseudomallei/metabolismo , Melioidose/metabolismo , Melioidose/microbiologia , Camundongos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , RNA-Seq , Solo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Sistemas de Secreção Tipo VI/genética , Sistemas de Secreção Tipo VI/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Água
5.
Infect Immun ; 90(8): e0022222, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35862715

RESUMO

Burkholderia pseudomallei, the causative agent of melioidosis, is a facultative intracellular, Gram-negative pathogen that is highly infectious via the respiratory route and can cause severe, debilitating, and often fatal diseases in humans and animals. At present, no licensed vaccines for immunization against this CDC Tier 1 select agent exist. Studies in our lab have previously demonstrated that subunit vaccine formulations consisting of a B. pseudomallei capsular polysaccharide (CPS)-based glycoconjugate (CPS-CRM197) combined with hemolysin-coregulated protein (Hcp1) provided C57BL/6 mice with high-level protection against an acute inhalational challenge of B. pseudomallei. In this study, we evaluated the immunogenicity and protective capacity of B. pseudomallei alkyl hydroperoxide reductase subunit C (AhpC) in combination with CPS-CRM197. AhpC is a peroxiredoxin involved in oxidative stress reduction and is a potential protective antigen. To facilitate our studies and maximize safety in animals, recombinant B. pseudomallei AhpC harboring an active site mutation (AhpCC57G) was expressed in Escherichia coli and purified using tandem nickel-cobalt affinity chromatography. Immunization of C57BL/6 mice with CPS-CRM197 combined with AhpCC57G stimulated high-titer IgG responses against the CPS component of the glycoconjugate as well as stimulated high-titer IgG and robust interferon gamma (IFN-γ)-, interleukin-5 (IL-5)-, and IL-17-secreting T cell responses against AhpCC57G. When challenged via an inhalational route with a high dose (~27 50% lethal doses [LD50s]) of B. pseudomallei, 70% of the immunized mice survived 35 days postchallenge. Collectively, our findings demonstrate that AhpCC57G is a potent activator of cellular and humoral immune responses and may be a promising candidate to include in future melioidosis subunit vaccines.


Assuntos
Burkholderia pseudomallei , Melioidose , Animais , Anticorpos Antibacterianos , Vacinas Bacterianas , Burkholderia pseudomallei/genética , Glicoconjugados , Humanos , Imunoglobulina G , Melioidose/prevenção & controle , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Vacinas de Subunidades/genética
6.
Infect Immun ; 90(7): e0003522, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35695502

RESUMO

Melioidosis is an underreported human disease caused by the Gram-negative intracellular pathogen Burkholderia pseudomallei (Bpm). Both the treatment and the clearance of the pathogen are challenging, with high relapse rates leading to latent infections. This has been linked to the bacterial persistence phenomenon, a growth arrest strategy that allows bacteria to survive under stressful conditions, as in the case of antibiotic treatment, within a susceptible clonal population. At a molecular level, this phenomenon has been associated with the presence of toxin-antitoxin (TA) systems. We annotated the Bpm K96243 genome and selected 11 pairs of genes encoding for these TA systems, and their expression was evaluated under different conditions (supralethal antibiotic conditions; intracellular survival bacteria). The predicted HigB toxin (BPSL3343) and its predicted antitoxin HigA (BPS_RS18025) were further studied using mutant construction. The phenotypes of two mutants (ΔhigB and ΔhigB ΔhigA) were evaluated under different conditions compared to the wild-type (WT) strain. The ΔhigB toxin mutant showed a defect in intracellular survival on macrophages, a phenotype that was eliminated after levofloxacin treatment. We found that the absence of the toxin provides an advantage over the WT strain, in both in vitro and in vivo models, during persister conditions induced by levofloxacin. The lack of the antitoxin also resulted in differential responses to the conditions evaluated, and under some conditions, it restored the WT phenotype, overall suggesting that both toxin and antitoxin components play a role in the persister-induced phenotype in Bpm.


Assuntos
Antitoxinas , Burkholderia pseudomallei , Sistemas Toxina-Antitoxina , Antibacterianos/farmacologia , Antitoxinas/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes , Burkholderia pseudomallei/genética , Burkholderia pseudomallei/metabolismo , Humanos , Levofloxacino , Sistemas Toxina-Antitoxina/genética , Virulência/genética
7.
Pathogens ; 10(11)2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34832508

RESUMO

Significant advancement has been made in the development of vaccines against bacterial pathogens. However, several roadblocks have been found during the evaluation of vaccines against intracellular bacterial pathogens. Therefore, new lessons could be learned from different vaccines developed against unrelated intracellular pathogens. Bacillary dysentery and melioidosis are important causes of morbidity and mortality in developing nations, which are caused by the intracellular bacteria Shigella and Burkholderia pseudomallei, respectively. Although the mechanisms of bacterial infection, dissemination, and route of infection do not provide clues about the commonalities of the pathogenic infectious processes of these bacteria, a wide variety of vaccine platforms recently evaluated suggest that in addition to the stimulation of antibodies, identifying protective antigens and inducing T cell responses are some additional required elements to induce effective protection. In this review, we perform a comparative evaluation of recent candidate vaccines used to combat these two infectious agents, emphasizing the common strategies that can help investigators advance effective and protective vaccines to clinical trials.

8.
NPJ Vaccines ; 6(1): 72, 2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-33986290

RESUMO

Melioidosis, caused by Burkholderia pseudomallei (Bpm), lacks a vaccine. We identify the immune correlates of protection induced by B. mallei ΔtonB Δhcp1 (CLH001) and Bpm ΔtonB Δhcp1 (PBK001) vaccines against inhalational melioidosis. Mucosal immunization with either vaccine generates Bpm-specific IgM and IgG (IgG2b/c > IgG1 > IgG3) antibodies in sera and lungs, and lung IgA antibodies. Sera confers complement-independent bactericidal activity and macrophages opsonophagocytic uptake but is insufficient in passive transfer experiments to provide significant protection. Both vaccines elicit memory Th1 and Th17 CD4+ T-cell responses in lung and spleen after Bpm antigen-specific recall. The PBK001 vaccine is superior in generating respiratory IgA post-boost, anamnestic IgG at challenge, T-cell recall to specific antigen, and development of diverse polyfunctional memory T-cell pools. Analysis of lung histology suggests that potent polyfunctional T-cell memory and/or IL-17 signatures generated with PBK001 vaccination may be associated with moderate lung inflammation post vaccination.

9.
Expert Rev Vaccines ; 19(7): 653-660, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32669008

RESUMO

Introduction Burkholderia pseudomallei is an environmental intracellular Gram-negative bacterium that causes melioidosis, a severe infectious disease affecting humans and animals. An increase in melioidosis cases worldwide and the high mortality rate of the disease makes it a public health concern. Melioidosis is known as the 'great mimicker' because it presents with a wide range of disease manifestations. B. pseudomallei is naturally resistant to antibiotics and delay in diagnosis leads to ineffective treatment. Furthermore, there is no approved vaccine to prevent melioidosis infection in humans. Therefore, it is a priority to license a vaccine that can be used for both high-risk endemic areas and for biodefense purposes. Areas covered In this review, we have focussed on recent progress in the USA for the development and advancement of lead B. pseudomallei vaccine candidate(s) ready for testing in pre-clinical trials. Those candidates include live-attenuated vaccines, glycoconjugate vaccines, outer-membrane vesicles, and gold nanoparticle vaccines. Expert opinion Side-by-side comparison of the leading B. pseudomallei vaccine candidates will provide important information to further advance studies into pre-clinical trials. The likelihood of any of these current vaccines becoming the selected candidate that will reduce the occurrence of melioidosis worldwide is closer than ever.


Assuntos
Vacinas Bacterianas/administração & dosagem , Burkholderia pseudomallei/imunologia , Melioidose/prevenção & controle , Animais , Vacinas Bacterianas/imunologia , Farmacorresistência Bacteriana , Ouro , Humanos , Melioidose/diagnóstico , Melioidose/microbiologia , Nanopartículas Metálicas
10.
PLoS Negl Trop Dis ; 13(7): e0007578, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31306423

RESUMO

BACKGROUND: Glanders caused by Burkholderia mallei is a re-emerging zoonotic disease affecting solipeds and humans. Furthermore, B. mallei is genetically related to B. pseudomallei, which is the causative agent of melioidosis. Both facultative intracellular bacteria are classified as tier 1 select biothreat agents. Our previous study with a B. mallei ΔtonB Δhcp1 (CLH001) live-attenuated vaccine demonstrated that it is attenuated, safe and protective against B. mallei wild-type strains in the susceptible BALB/c mouse model. METHODOLOGY/PRINCIPAL FINDING: In our current work, we evaluated the protective efficacy of CLH001 against glanders and melioidosis in the more disease-resistant C57BL/6 mouse strain. The humoral as well as cellular immune responses were also examined. We found that CLH001-immunized mice showed 100% survival against intranasal and aerosol challenge with B. mallei ATCC 23344. Moreover, this vaccine also afforded significant cross-protection against B. pseudomallei K96243, with low level bacterial burden detected in organs. Immunization with a prime and boost regimen of CLH001 induced significantly greater levels of total and subclasses of IgG, and generated antigen-specific splenocyte production of IFN-γ and IL-17A. Interestingly, protection induced by CLH001 is primarily dependent on humoral immunity, while CD4+ and CD8+ T cells played a less critical protective role. CONCLUSIONS/SIGNIFICANCE: Our data indicate that CLH001 serves as an effective live attenuated vaccine to prevent glanders and melioidosis. The quantity and quality of antibody responses as well as improving cell-mediated immune responses following vaccination need to be further investigated prior to advancement to preclinical studies.


Assuntos
Proteínas de Bactérias/imunologia , Vacinas Bacterianas/imunologia , Burkholderia mallei/imunologia , Mormo/imunologia , Imunização , Melioidose/imunologia , Proteínas de Membrana/imunologia , Vacinas Atenuadas/imunologia , Animais , Anticorpos Antibacterianos/imunologia , Proteínas de Bactérias/genética , Burkholderia mallei/genética , Linfócitos T CD8-Positivos/imunologia , Modelos Animais de Doenças , Feminino , Mormo/microbiologia , Mormo/prevenção & controle , Humanos , Imunidade Humoral , Melioidose/microbiologia , Melioidose/prevenção & controle , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Vacinação , Fatores de Virulência/genética , Fatores de Virulência/imunologia
11.
mSphere ; 4(1)2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30602524

RESUMO

Burkholderia pseudomallei is a Gram-negative facultative intracellular bacterium and the causative agent of melioidosis, a severe infectious disease found throughout the tropics. This organism is closely related to Burkholderia mallei, the etiological agent of glanders disease which primarily affects equines. These two pathogenic bacteria are classified as Tier 1 select agents due to their amenability to aerosolization, limited treatment options, and lack of an effective vaccine. We have previously successfully demonstrated the immunogenicity and protective efficacy of a live attenuated vaccine strain, B. malleiΔtonB Δhcp1 (CLH001). Thus, we applied this successful approach to the development of a similar vaccine against melioidosis by constructing the B. pseudomalleiΔtonB Δhcp1 (PBK001) strain. C57BL/6 mice were vaccinated intranasally with the live attenuated PBK001 strain and then challenged with wild-type B. pseudomallei K96243 by the aerosol route. Immunization with strain PBK001 resulted in full protection (100% survival) against acute aerosolized melioidosis with very low bacterial burden as observed in the lungs, livers, and spleens of immunized mice. PBK001 vaccination induced strong production of B. pseudomallei-specific serum IgG antibodies and both Th1 and Th17 CD4+ T cell responses. Further, humoral immunity appeared to be essential for vaccine-induced protection, whereas CD4+ and CD8+ T cells played a less direct immune role. Overall, PBK001 was shown to be an effective attenuated vaccine strain that activates a robust immune response and offers full protection against aerosol infection with B. pseudomalleiIMPORTANCE In recent years, an increasing number of melioidosis cases have been reported in several regions where melioidosis is endemic and in areas where melioidosis had not commonly been diagnosed. Currently, the estimated burden of disease is around 165,000 new cases annually, including 89,000 cases that have fatal outcomes. This life-threatening infectious disease is caused by B. pseudomallei, which is classified as a Tier 1 select agent. Due to the high case fatality rate, intrinsic resistance to multiple antibiotic treatments, susceptibility to infection via the aerosol route, and potential use as a bioweapon, we have developed an effective live attenuated PBK001 vaccine capable of protecting against aerosolized melioidosis.


Assuntos
Vacinas Bacterianas/imunologia , Burkholderia pseudomallei/imunologia , Melioidose/prevenção & controle , Animais , Anticorpos Antibacterianos/sangue , Burkholderia pseudomallei/classificação , Modelos Animais de Doenças , Feminino , Melioidose/imunologia , Camundongos Endogâmicos C57BL , Vacinas Atenuadas/imunologia
12.
Bioengineering (Basel) ; 4(3)2017 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-28952541

RESUMO

The use of culture-independent approaches, such as metagenomics, provides complementary access to environmental microbial diversity. Mangrove environments represent a highly complex system with plenty of opportunities for finding singular functions. In this study we performed a functional screening of fosmid libraries obtained from an oil contaminated mangrove site, with the purpose of identifying clones expressing hydrolytic activities. A novel gene coding for a ß-N-acetylhexosaminidase with 355 amino acids and 43KDa was retrieved and characterized. The translated sequence showed only 38% similarity to a ß-N-acetylhexosaminidase gene in the genome of Veillonella sp. CAG:933, suggesting that it might constitute a novel enzyme. The enzyme was expressed, purified, and characterized for its enzymatic activity on carboxymethyl cellulose, p-Nitrophenyl-2acetamide-2deoxy-ß-d-glucopyranoside, p-Nitrophenyl-2acetamide-2deoxy-ß-d-galactopyranoside, and 4-Nitrophenyl ß-d-glucopyranoside, presenting ß-N-acetylglucosaminidase, ß-glucosidase, and ß-1,4-endoglucanase activities. The enzyme showed optimum activity at 30 °C and pH 5.5. The characterization of the putative novel ß-N-acetylglucosaminidase enzyme reflects similarities to characteristics of the environment explored, which differs from milder conditions environments. This work exemplifies the application of cultivation-independent molecular techniques to the mangrove microbiome for obtaining a novel biotechnological product.

13.
AMB Express ; 6(1): 77, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27637947

RESUMO

The lytic phage ST79 of Burkholderia pseudomallei can lyse a broad range of its host including antibiotic resistant isolates from within using a set of proteins, holin, lysB, lysC and endolysin, a peptidoglycan (PG) hydrolase enzyme. The phage ST79 endolysin gene identified as peptidase M15A was cloned, expressed and purified to evaluate its potential to lyse pathogenic bacteria. The molecular size of the purified enzyme is approximately 18 kDa and the in silico study cited here indicated the presence of a zinc-binding domain predicted to be a member of the subfamily A of a metallopeptidase. Its activity, however, was reduced by the presence of Zn(2+). When Escherichia coli PG was used as a substrate and subjected to digestion for 5 min with 3 µg/ml of enzyme, the peptidase M15A showed 2 times higher in lysis efficiency when compared to the commercial lysozyme. The enzyme works in a broad alkaligenic pH range of 7.5-9.0 and temperatures from 25 to 42 °C. The enzyme was able to lyse 18 Gram-negative bacteria in which the outer membrane was permeabilized by chloroform treatment. Interestingly, it also lysed Enterococcus sp., but not other Gram-positive bacteria. In general, endolysin cannot lyse Gram-negative bacteria from outside, however, the cationic amphipathic C-terminal in some endolysins showed permeability to Gram-negative outer membranes. Genetically engineered ST79 peptidase M15A that showed a broad spectrum against Gram-negative bacterial PG or, in combination with an antibiotic the same way as combined drug methodology, could facilitate an effective treatment of severe or antibiotic resistant cases.

14.
Trans R Soc Trop Med Hyg ; 109(7): 462-8, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26048871

RESUMO

BACKGROUND: Burkholderia pseudomallei, a Gram-negative saprophytic bacillus, is a severe infectious agent that causes melioidosis and soil is the most important reservoir. METHODS: One hundred and forty soil samples were tested for pH, moisture content and total C and N measurements and used for DNA extraction and culture for B. pseudomallei. The quantitative real-time PCR (qPCR) targeting wcbG, a putative capsular polysaccharide biosynthesis protein gene of B. pseudomallei, was developed to detect the bacterium, and random amplified polymorphic DNA (RAPD) was used to detect the microbial diversity in soil. RESULTS: The acidic pH was correlated with the presence of the bacterium. Forty-four soil sites (44/140, 31.4%) were positive for B. pseudomallei by qPCR, of which 21 were positive by culture. The limit of detection is 32 fg of DNA (about 4 genomes). The RAPD method could classify the soil samples into low diversity (LD) and high diversity (HD) sites. The trend of LD was found with B. pseudomallei positive soil sites. CONCLUSIONS: The acidity of the soil or metabolites from organisms in the sites may contribute to the presence of the bacterium. Further investigation of microbes by a more robust method should elucidate biological factors that promote the presence of B. pseudomallei and may be used for controlling the bacterium in the environment.


Assuntos
Técnicas Bacteriológicas/métodos , Burkholderia pseudomallei/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real/métodos , Microbiologia do Solo , Burkholderia pseudomallei/genética , DNA Bacteriano/genética , Limite de Detecção , Polissacarídeos Bacterianos/genética , Técnica de Amplificação ao Acaso de DNA Polimórfico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...